

MY-BASIC

Quick Reference

Copyright (C) 2011 – 2022 Tony Wang

https://github.com/paladin-t/my_basic

https://github.com/paladin-t/my_basic

1. Introduction

MY-BASIC is a lightweight BASIC interpreter written in standard C in

dual files. It aims to be embeddable, extendable and portable. It is a

dynamic typed programming language, reserves structured syntax,

supports a style of prototype-based programming (OOP), also

implements a functional paradigm by lambda abstraction. The core is

written in a C source file and an associated header file. It's easy to

either use it as a standalone interpreter or embed it with existing

projects in C, C++, Java, Objective-C, Swift, C#, etc. and totally

customizable by adding your own scripting interface. It's also possible

to learn how to build an interpreter from scratch, or build your own

dialect based on it.

This manual is a quick reference on how to program with MY-BASIC,

what it does and what does not, how to use it and extend it as a

scripting programming language.

For the latest revision or other information, see

https://github.com/paladin-t/my_basic.

2. Programming with BASIC

The well-known programming language BASIC is an acronym for

Beginner's All-purpose Symbolic Instruction Code; when we mention

BASIC today, we often refer to the BASIC family, not any specific one.

The BASIC family has a long history since the original BASIC was

https://github.com/paladin-t/my_basic

designed in 1964 by John George Kemeny and Thomas Eugene Kurtz

at Dartmouth College in New Hampshire; and BASIC is famous

because it is easy to learn and use all the time. Thanks to all BASIC

dedicators and fanatics, the passion affected many people like me,

and guided us to the computer world.

MY-BASIC offers a structured BASIC syntax, and many other retro and

modern features. It would be familiar to you if you have ever

programmed with another BASIC dialect, or other programming

languages.

Getting started

You can download the latest MY-BASIC package from

https://github.com/paladin-t/my_basic/archive/master.zip or check

out the source code to make a build manually. You can get the latest

revision by git clone https://github.com/paladin-t/my_basic.git. In

this part let’s get start using the MY-BASIC interpreter, which comes

as follow:

The close square bracket is an input prompt. Starting with a “Hello

World” convention in MY-BASIC:

https://github.com/paladin-t/my_basic/archive/master.zip

Like other BASIC dialects, MY-BASIC is case-insensitive; in another

word PRINT A$ and Print a$ mean all the same. You will get a greeting

text after input the above code, then input a RUN command and

hinting Enter. Any text begins with a single quote until the end of that

line is a comment (a.k.a. remark) which won’t influence the logic of a

program; a comment does not perform anything, but just a short

explanation of code. It’s possible to use the classic REM statement to

start a comment as well.

MY-BASIC is configurable with macros, this manual is written with

default configuration.

Multi-line comment

MY-BASIC also supports multi-line comment, which is a small

advantage comparing to other dialects. It’s surrounded by ‘[and ’],

eg.

‘ Hello world tutorial

input “What is your name: “, n$

def greeting(a, b)

 return a + “ “ + b + “ by “ + n$ + “.”

enddef

print greeting(“Hello”, “world”);

MY-BASIC ignores all comment lines between them. It is convenient

to simply modify ‘[to ‘‘[to uncomment all lines.

Support for Unicode

Unicode is widely used nowadays for international text

representation; MY-BASIC supports both Unicode based identifier

and string manipulations. Eg.

Keywords

There are some keywords and reserved functions in MY-BASIC as

follow:

Keywords REM, NIL, MOD, AND, OR, NOT, IS, LET,

DIM, IF, THEN, ELSEIF, ELSE, ENDIF, FOR,

print "你好" + "世界";

日本語 = "こんにちは"

print 日本語, ", ", len(日本語);

print “Begin”;

‘[

print “This line won’t be executed!”;

print “This is also ignored”;

‘]

print “End”;

IN, TO, STEP, NEXT, WHILE, WEND, DO,

UNTIL, EXIT, GOTO, GOSUB, RETURN,

CALL, DEF, ENDDEF, CLASS, ENDCLASS,

ME, NEW, VAR, REFLECT, LAMBDA, MEM,

TYPE, IMPORT, END

Reserved

functions

Standard

library

ABS, SGN, SQR, FLOOR, CEIL, FIX, ROUND,

SRND, RND, SIN, COS, TAN, ASIN, ACOS,

ATAN, EXP, LOG, ASC, CHR, LEFT, LEN,

MID, RIGHT, STR, VAL, PRINT, INPUT

Collection

library

LIST, DICT, PUSH, POP, BACK, INSERT,

SORT, EXISTS, INDEX_OF, GET, SET,

REMOVE, CLEAR, CLONE, TO_ARRAY,

ITERATOR, MOVE_NEXT

It is not accepted to use these words for user-defined identifiers; in

addition there are two more predefined boolean constants, a.k.a.

TRUE and FALSE, as implied literally, represent boolean value true and

false, it’s not accepted to reassign these symbols with other values.

Details of keywords and functions will be explained latter in this

manual.

Operators

All operators in MY-BASIC as follow:

Operators +, -, *, /, ^, =, <, >, <=, >=, <>

These operators are used in calculation or comparison expressions.

Besides, the keywords MOD, AND, OR, NOT, IS also work as operators.

An expression is evaluated from left to right, with top down priorities

as follow:

Level Operation

1 () (explicit priority indicator)

2 - (negative), NOT

3 ^

4 *, /, MOD

5 +, - (minus)

6 <, >, <=, >=, <>, = (equal comparison)

7 AND, OR, IS

8 = (assignment)

MOD stands for modulus, a.k.a. % in some other programming

languages. The caret symbol ^ stands for power operation.

Data types and operations

MY-BASIC is a dynamic programming language, therefore variables

don’t have types, but values do. The built-in types are: Nil, Integer,

Real, String, Type, Array, List, List Iterator, Dictionary, Dictionary

Iterator, Prototype (a.k.a. “Class”), and Sub Routine (including

Lambda). Besides, MY-BASIC also supports user defined data types

(Usertype and Referenced Usertype) to customize your own data

structures.

Nil is a special type which includes only one valid value NIL, a.k.a. null,

none, nothing, etc. It disposes/unreferences the previous value of a

variable by assigning it with nil.

A Type typed value represents the type of a value, it will be explained

with the TYPE statement.

Integer and real are defined as int and float C types, which are both

32bit long under most compilers. You can redefine them as other

types such as long, long long, double and long double by modifying a

few lines of code. Since there is no dedicated boolean type, it’s

defined as integer also, and can be assigned from any expression. A

boolean expression results to false with NIL, FALSE, and 0; it results to

true with all other values including blank string “”.

MY-BASIC accepts literal numbers in HEX and OCT. A hexadecimal

number begins with a 0x prefix, and an octadic begins with a 0. Eg.

0x10 (HEX) equals to 020 (OCT) equals to 16 (DEC).

A variable identifier is formed with letters, numbers, underline and an

optional dollar postfix, but it must begin with a letter or an underline.

It’s not designed to use type specifier for variable, and you don’t

need to declare it before using it. You don’t need to make conversion

between integer and float values manually, generally MY-BASIC stores

numbers with proper data type automatically. The dollar sigil $ is

reserved from traditional BASIC dialects as a valid postfix of a variable

identifier. But it doesn’t denote for type of string in most cases.

However, there are special cases that $ does mean something with

the DIM and INPUT statements. An assignment statement consists of

an optional beginning keyword LET and a following assignment

expression. Eg.

MY-BASIC supports array up to four dimensions by default, which is

defined by a macro. Array is a kind of regular collection data structure

in programming. An array can store a set of data that each element

can be accessed by the array name and subscripts. An array must be

declared by a DIM (short for dimension) statement before using, eg.

The common naming rule for an array is same to naming a variable,

actually all user identifiers in MY-BASIC follow the same rule. An array

can be either a collection of real or string values, depends on whether

the identifier ends up with a $ sigil. Dimensions are separated by

commas. Array indexes begin from zero in MY-BASIC therefore

nums(0) is the first element of array nums, it is a bit different from

other BASIC, but more common in modern programming languages.

An array index could be a non-negative integer value formed as a

constant, a variable of integer or an expression which results an

integer; invalid index may cause an out of bound error.

It is possible to concatenate two Strings together using the plus

operator +. Each string concatenating generates a new string object

with memory allocation. It is also possible to apply comparison

operators to Strings, which starts comparing the first character of

dim nums(10)

dim strs$(2, 5)

let a = 1 ‘ Assignment statement begins with LET

pi = 3.14 ‘ Another assignment statement without LET

both string, if they are equal to each other, it continues checking the

following ones until a difference occurs or reaching the end of any

one; then return an integer value indicating the difference.

Structured routine

It is possible to extract reusable code blocks with sub routines.

MY-BASIC supports both structured routine with the

CALL/DEF/ENDDEF statements and instructional routine with the

GOSUB/RETURN (and GOTO) statements, but they can’t be mixed

together in one program.

A structured routine begins with a DEF statement and ends with

ENDDEF, you can define routines with any arity. Calling a sub routine

is similar to calling a native scripting interface. It requires an explicit

CALL statement, if a routine is lexically defined after calling. A routine

returns the value of the last expression to its caller, or returns

explicitly with the RETURN statement. Eg.

Each routine has its own scope for variable lookup.

Furthermore, the CALL() statement is used to get an invokable value

as:

Note that it requires a pair of brackets to get the value, or it’s a calling

execution.

routine = call(fun) ‘ Get an invokable value

routine() ‘ Invoke an invokable value

a = 1

b = 0

def fun(d)

 d = call bar(d)

sin(10)

 return d ' Try comment this line

enddef

def foo(b)

 a = 2

 return a + b

enddef

def bar(c)

 return foo(c)

enddef

r = fun(2 * 5)

print r; a; b; c;

Instructional routine

Traditional instructional routine is reserved as well. A label is used to

tag the start point of an instructional routine. Use a GOSUB statement

wherever in a program to call that labeled routine. The RETURN

statement is used to exit a routine and transfer control back to its

caller.

Control structures

There are three kinds of execution flows in MY-BASIC.

Serial structure, the most basic one, executes statements line by line.

MY-BASIC supports GOTO statement which provides unconditional

control transfer ability. Use it similar to GOSUB as GOTO label. The

difference is that an instructional routine can return back from a

callee, but unconditional GOTO cannot. The END statement can be

placed anywhere in source code to terminate the whole execution of

a program.

Conditional structures consist of some condition jump statements:

IF/THEN/ELSEIF/ELSE/ENDIF. These statements check condition

expressions then perform an action in a case of true condition branch,

otherwise in a case of false it performs something else as you write.

Conditional IF statements in a single line:

Or multiple lines:

if n mod 2 then print "Odd"; else print "Even";

It supports nested IF with multi-line conditional statements. Note

that single line IF doesn’t require ENDIF, but the other does.

Loop structure statements check a loop condition and do the loop

body in a case of true until it comes to a false case.

Use the FOR/TO/STEP/NEXT statements to loop for certain cycles. Eg.

The STEP part is optional if it increases by 1. The loop variable after

NEXT is also optional if it is associated with a corresponding FOR.

MY-BASIC also supports loop on collections with the FOR/IN/NEXT

statements. It’s possible to iterate list, dictionary, iterable class and

usertypes. The loop variable is assigned with the value of the element

for i = 1 to 10 step 1

 print i;

next i

input n

if n = 1 then

 print "One";

elseif n = 2 then

 print "Two";

elseif n = 3 then

 print "Three";

else

 print "More than that";

endif

which an iterator is currently pointing to. Eg, this counts from one to

five in list:

The WHILE/WEND and DO/UNTIL loops are used to loop for uncertain

steps, or wait for specific conditions. Eg.

Just as their names imply, the WHILE/WEND statements do the loop

body while the condition is true, and the DO/UNTIL statements do it

until the condition is false. The WHILE/WEND statements check

condition before executing loop body, while the DO/UNTIL

statements check condition after loop body has been executed once.

a = 1

do

 print a;

 a = a + 1

until a > 10

a = 1

while a <= 10

 print a;

 a = a + 1

wend

for i in list(1 to 5)

 print i;

next

The EXIT statement interrupts current loop and continues to execute

the program outside loop.

Using class

MY-BASIC supports prototype-based OOP (Object-Oriented

Programming). It is also as known as “prototypal”,

“prototype-oriented”, “classless”, or “instance-based” programming.

Use a pair of CLASS/ENDCLASS statements to define a prototype

object (a class). Use VAR to declare a member variable in a class. It’s

possible to define member function (a.k.a. “method”) in a prototype

with the DEF/ENDDEF statements as well. Write another prototype

surrounding with a pair of parentheses after a declaration statement

to inherit from it (meaning using it as meta class). Use the NEW

statement to create a new instance of a prototype. Eg.

bar simply links foo as meta class. inst creates a new clone of bar and

keep the foo meta linkage.

MY-BASIC supports reflection on a prototype with the REFLECT

statement. It iterates all variable fields and sub routines in a class and

its meta class, and stores name/value pairs of variables and

name/type pairs of sub routines to a dictionary. Eg.

class foo

 var a = 1

 def fun(b)

 return a + b

 enddef

endclass

class bar(foo) ‘ Use Foo as a meta class (inheriting)

 var a = 2

endclass

inst = new(bar) ‘ Create a new clone of Bar

print inst.fun(3);

class base

 var b = "Base"

 def fun()

 print b;

 enddef

endclass

class derived(base)

 var d = "Derived"

 def fun()

 print d;

 enddef

endclass

i = new(derived)

i.fun();

r = reflect(i)

f = iterator(r)

while move_next(f)

 k = get(f)

 v = r(k)

 print k, ": ", v;

wend

g = get(i, “fun”);

g()

Using Lambda

A lambda abstraction (a.k.a. “anonymous function” or “function

literal”) is a function definition that is not bound to an identifier.

Lambda function is often used as:

1. argument passed to other functions, or

2. return value from a function.

A lambda becomes a closure after it captured some values in outer

scope.

MY-BASIC offers full support for lambda, including invokable as a

value, higher order function, closure and currying, etc.

A lambda expression begins with a LAMBDA keyword. Eg.

' Higher order function

def foo()

 y = 1

 return lambda (x, z) (return x + y + z)

enddef

l = foo()

print l(2, 3);

' Simple invoke

f = lambda (x, y) (return x * x + y * y)

print f(3, 4);

https://en.wikipedia.org/wiki/Anonymous_function
https://en.wikipedia.org/wiki/Closure_(computer_programming)

' Closure

s = 0

def create_lambda()

 v = 0

 return lambda ()

 (

 v = v + 1

 s = s + 1

 print v;

 print s;

)

enddef

a = create_lambda()

b = create_lambda()

a()

b()

' As return value

def counter()

 c = 0

 return lambda (n)

 (

 c = c + n

 print c;

)

enddef

acc = counter()

acc(1)

acc(2)

' Currying

def divide(x, y)

 return x / y

enddef

def divisor(d)

 return lambda (x) (return divide(x, d))

enddef

half = divisor(2)

third = divisor(3)

print half(32); third(32);

Checking the type of a value

The TYPE statement tells the type of a value, or generates type

information with a predefined type string. Eg.

It’s also possible to check whether a value matches a specific type

with the IS operator as follow:

The IS statement also tells whether an instance of a prototype is

inherited from another one:

Pass a type value to the STR statement to get the type name in string.

Importing another BASIC file

It helps to organize source files by separating different parts into

multiple files in a big project. The IMPORT statement imports other

source file just as it were written at where it imports. Eg. assuming

we got an “a.bas” as:

And another “b.bas” as:

foo = 1

print inst is foo; ‘ True if foo is inst’s prototype

print 123 is type(“INT”); “Hi” is type(“STRING”);

print inst is type(“CLASS”);

print type(123); type(“Hi”); ‘ Get types of values

print type(“INT”); type(“REAL”); ‘ Get specific types

Now you can use everything imported from “a.bas”. MY-BASIC

handles cycle importing properly.

Importing a module

It’s also possible to put some native scripting interfaces in a module

(a.k.a. “namespace”) to avoid naming pollution. MY-BASIC doesn’t

support making modules in BASIC for the moment. Use IMPORT

“@xxx” to import a native module, all symbols in that module could

be used without module prefix.

3. Core and Standard Libraries

MY-BASIC offers a set of frequently used functions which provide

fundamental numeric and string operations. These function names

cannot be used for user-defined identifiers. See the figure follow for

details of these functions:

Type Name Description

Numeric ABS Returns the absolute value of a number

SGN Returns the sign of a number

SQR Returns the arithmetic square root of a

number

import “a.bas”

print foo;

FLOOR Returns the greatest integer not greater

than a number

CEIL Returns the least integer not less than a

number

FIX Returns the integer part of a number

ROUND Returns the nearest approximate integer

of a number

SRND Seeds the random generator

RND Returns a random float number between

[0.0, 1.0] with RND, or [0, max] with

RND(max), or [MIN, MAX] with RND(min,

max)

SIN Returns the sine of a number

COS Returns the cosine of a number

TAN Returns the tangent of a number

ASIN Returns the arcsine of a number

ACOS Returns the arccosine of a number

ATAN Returns the arctangent of a number

EXP Returns the base-e exponential of a

number

LOG Returns the base-e logarithm of a number

String ASC Returns the ASCII code integer of a

character

CHR Returns the character of an ASCII code

integer

LEFT Returns a specific number of characters

from the left of a string

MID Returns a specific number of characters

from the specific position of a string

RIGHT Returns a specific number of characters

from the right of a string

STR Returns the string representation of a

number, or format a class instance with

the TO_STRING function

Common VAL Returns the number representation of a

string, or the value of a dictionary iterator,

overridable for referenced usertype and

class instance

LEN Returns the length of a string or an array,

or the element count of a LIST or a DICT,

overridable for referenced usertype and

class instance

Input &

Output

PRINT Outputs number or string to the standard

output stream, user redirectable

INPUT Inputs number or string from the standard

input stream, user redirectable

The INPUT statement is followed with an optional input prompt string,

then the variable identifier to be filled; it accepts string when a $ is

specified, otherwise accepts number. Note that all these functions

except PRINT and INPUT require a pair of brackets surrounding

arguments; the RND statement is a bit special, it comes either with or

without brackets, see the figure for detail.

4. Collection Libraries

MY-BASIC offers a set of LIST, DICT manipulation functions, which

provide creation, accessing, iteration, etc. as follow:

Name Description

LIST Creates a list

DICT Creates a dictionary

PUSH Pushes a value to the tail of a list, overridable for

referenced usertype and class instance

POP Pops a value from the tail of a list, overridable for

referenced usertype and class instance

BACK Peeks the value at tail of a list, overridable for

referenced usertype and class instance

INSERT Inserts a value at a specific position of a list,

overridable for referenced usertype and class

instance

SORT Sorts a list increasingly, overridable for referenced

usertype and class instance

EXISTS Tells whether a list contains a specific value, or

whether a dictionary contains a specific key,

overridable for referenced usertype and class

instance

INDEX_OF Gets the index of a value in a list, overridable for

referenced usertype and class instance

GET Returns the value at a specific index in a list, or the

value with a specific key in a dictionary, or a

member of a class instance, overridable for

referenced usertype and class instance

SET Sets the value at a specific index in a list, or the

value with a specific key in a dictionary, or a

member variable of a class instance, overridable

for referenced usertype and class instance

REMOVE Removes the element at a specific index in a list,

or the element with a specific key in a dictionary,

overridable for referenced usertype and class

instance

CLEAR Clears a list or a dictionary, overridable for

referenced usertype and class instance

CLONE Clones a collection, or a referenced usertype

TO_ARRAY Copies all elements from a list to an array

ITERATOR Gets an iterator of a list or a dictionary,

overridable for referenced usertype and class

instance

MOVE_NEXT Moves an iterator to next position over a list or a

dictionary, overridable for referenced usertype

and class instance

Using collections, eg.

MY-BASIC supports accessing elements in a list or dictionary using

brackets directly:

A list begins from zero as well as how array does in MY-BASIC.

d = dict()

d(1) = 2

print d(1);

l = list(1, 2, 3, 4)

set(l, 1, “B”)

print exists(l, 2); pop(l); back(l); len(l);

d = dict(1, “One”, 2, “Two”)

set(d, 3, “Three”)

print len(d);

it = iterator(d)

while move_next(it)

 print get(it);

wend

5. Application Programming Interface

MY-BASIC is written cleanly in standard C in dual files. All you need to

do to embed MY-BASIC with existing projects is just to copy

my_basic.h and my_basic.c to your target project, then add them to

the project build pipeline. All interfaces are declared in my_basic.h.

Most API return int value representing for execution states, most of

them should return MB_FUNC_OK if there is no error, check the

MB_CODES macro in my_basic.h for details. Yet there are some

exceptions when a simple int doesn’t fit.

Interpreter structure

MY-BASIC uses an interpreter structure to store necessary data during

parsing and running; including registered function, AST (Abstract

Syntax Tree), parsing context, running context, scope, error

information, etc. An interpreter structure is a unit of context.

Meta information

unsigned long mb_ver(void);

Returns the version number of the current interpreter.

const char* mb_ver_string(void);

Returns the version text of the current interpreter.

Initializing and disposing

int mb_init(void);

This function must and must only be called once before any other

operations to initialize the entire system.

int mb_dispose(void);

This function must and must only be called once after using MY-BASIC

to dispose the entire system.

int mb_open(struct mb_interpreter_t** s);

This function opens an interpreter instance to get ready for parsing

and running.

It usually comes as:

int mb_close(struct mb_interpreter_t** s);

This function closes an interpreter instance after using. mb_open and

mb_close must be matched in pair.

int mb_reset(struct mb_interpreter_t** s, bool_t clear_funcs, bool_t

clear_vars);

This function resets an interpreter instance, often for a new load-run

cycle. It clears all variables if clear_vars is true; and also all registered

global functions if clear_funcs is true, but this function does not

re-register built-in interfaces.

Forking

These functions are used to fork and join an interpreter.

int mb_fork(struct mb_interpreter_t** s,

struct mb_interpreter_t* bas = 0;

mb_open(&bas);

struct mb_interpreter_t* r,

bool_t clear_forked);

This function forks a new interpreter, from r to s. All forked

environments share the same registered functions, parsed code, etc.

but uses its own running context. Pass true to clear_forked to let the

source instance collects and manages data in the forked one.

int mb_join(struct mb_interpreter_t** s);

This function joins a forked interpreter. Use this to close a forked

interpreter.

int mb_get_forked_from(struct mb_interpreter_t* s,

struct mb_interpreter_t** src);

This function gets the source interpreter of a forked one.

Function registration/unregistration

These functions are used to register or unregister native scripting

interfaces.

int mb_register_func(struct mb_interpreter_t* s,

const char* n,

mb_func_t f);

This function registers a function pointer into an interpreter with a

specific name. The function must have signature as int (*

mb_func_t)(struct mb_interpreter_t*, void**). A registered function

can be called in MY-BASIC code. This function returns how many

entries have been influenced, thus non-zero means success. The

specified identifier will be stored in upper case.

int mb_remove_func(struct mb_interpreter_t* s,

const char* n);

This function removes a registered function out of an interpreter with

a specific registered name. This function returns how many entries

have been influenced, thus non-zero means success.

int mb_remove_reserved_func(struct mb_interpreter_t* s,

const char* n);

This function removes a reserved function out of an interpreter with

a specific name. Do not use this function unless you really want to, Eg.

remove or replace built-in interfaces. This function returns how many

entries have been influenced, thus non-zero means success.

int mb_begin_module(struct mb_interpreter_t* s, const char* n);

This function begins a module context with a name. All functions

registered after it will be put into that module. Module is as known as

namespace, use the IMPORT statement to get shortcut to it.

int mb_end_module(struct mb_interpreter_t* s);

This function ends the current module context.

Interacting

These functions are used in extended functions to communicate with

the core.

int mb_attempt_func_begin(struct mb_interpreter_t* s,

void** l);

This function checks whether BASIC is invoking an extended function

in a legal beginning way. Call it when beginning an extended function

without parameters.

int mb_attempt_func_end(struct mb_interpreter_t* s,

void** l);

This function checks whether BASIC is invoking an extended function

in a legal ending way. Call it when ending an extended function

without parameters.

int mb_attempt_open_bracket(struct mb_interpreter_t* s,

void** l);

This function checks whether BASIC is invoking an extended function

in a legal way that begins with an open bracket.

int mb_attempt_close_bracket(struct mb_interpreter_t* s,

void** l);

This function checks whether BASIC is invoking an extended function

in a legal way that ends with a close bracket after argument list.

int mb_has_arg(struct mb_interpreter_t* s,

void** l);

This function detects whether there is any more argument at current

execution position. Use this function to implement a variadic function.

Returns zero for no more, otherwise non-zero.

int mb_pop_int(struct mb_interpreter_t* s,

void** l,

int_t* val);

This function tries to pop an argument as int_t from an interpreter.

And stores the result to *val.

int mb_pop_real(struct mb_interpreter_t* s,

void** l,

real_t* val);

This function tries to pop an argument as real_t from an interpreter.

And stores the result to *val.

int mb_pop_string(struct mb_interpreter_t* s,

void** l,

char** val);

This function tries to pop an argument as char* (string) from an

interpreter. And stores the pointer to *val. You don’t need to know

how and when a popped string will be disposed, but note that a

popped string may be disposed when popping next string argument,

so, just process it or cache it in time.

int mb_pop_usertype(struct mb_interpreter_t* s,

void** l,

void** val);

This function tries to pop an argument as void* (usertype) from an

interpreter. Use mb_pop_value instead if a usertype is larger than

void*.

int mb_pop_value(struct mb_interpreter_t* s,

void** l,

mb_value_t* val);

This function tries to pop an argument as mb_value_t from an

interpreter. Use this function instead of mb_pop_int, mb_pop_real

and mb_pop_string if an extended function accepts argument in

different types, or popping other advanced data types.

int mb_push_int(struct mb_interpreter_t* s,

void** l,

int_t val);

This function pushes a value as int_t to an interpreter.

int mb_push_real(struct mb_interpreter_t* s,

void** l,

real_t val);

This function pushes a value as real_t to an interpreter.

int mb_push_string(struct mb_interpreter_t* s,

void** l,

char* val);

This function pushes a value as char* (string) to an interpreter. The

memory of char* val must be allocated and disposable by MY-BASIC.

Consider use mb_memdup to make it before pushing. Eg.

mb_push_string(s, l, mb_memdup(str, (unsigned)(strlen(str) + 1));.

int mb_push_usertype(struct mb_interpreter_t* s,

void** l,

void* val);

This function pushes a value as void* (usertype) to an interpreter. Use

mb_push_value if a usertype is larger than void*.

int mb_push_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val);

This function pushes a value in mb_value_t to an interpreter. Use this

function instead of mb_push_int, mb_push_real and mb_push_string

if an extended function returns generics types. Or pushing other

advanced data types.

Class definition

These functions are used to define a class manually at native side.

int mb_begin_class(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_value_t** meta,

int c,

mb_value_t* out);

This function begins a class definition with a specific name. n is the

class name in upper case. meta is an array of mb_value_t*, which are

optional meta classes; c is the element count of the meta array. The

generated class will be returned into *out.

int mb_end_class(struct mb_interpreter_t* s,

void** l);

This function ends a class definition.

int mb_get_class_userdata(struct mb_interpreter_t* s,

void** l,

void** d);

This function gets the userdata of a class instance. The returned data

will be stored into *d.

int mb_set_class_userdata(struct mb_interpreter_t* s,

void** l,

void* d);

This function sets the userdata of a class instance with data d.

Value manipulation

These functions manipulate values.

int mb_get_value_by_name(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_value_t* val);

This function gets the value of an identifier with a specific name in

upper case. n is the expected name text. It returns a value to *val.

int mb_get_vars(struct mb_interpreter_t* s,

void** l,

mb_var_retrieving_func_t r,

int stack_offset);

This function retrieves the name and value of active variables in the

specific stack frame, then returns the retrieved variable count.

stack_offset indicates the stack offset, 0 for the current frame, -1 for

the root, other positive values for offset from the top (active) frame.

int mb_add_var(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_value_t val,

bool_t force);

This function adds a variable with a specific identifier name in upper

case and a value to an interpreter. n is the name text. val is the value

of the variable. force indicates whether overwrite existing value.

int mb_get_var(struct mb_interpreter_t* s,

void** l,

void** v,

bool_t redir);

This function gets a token literally, and stores it in the parameter *v if

it’s a variable. redir indicates whether to redirect result variable to

any member variable of a class instance.

int mb_get_var_name(struct mb_interpreter_t* s,

void** v,

char** n);

This function gets the name of a variable, then stores it in the

parameter *n.

int mb_get_var_value(struct mb_interpreter_t* s,

void** l,

mb_value_t* val);

This function gets the value of a variable into *val.

int mb_set_var_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val);

This function sets the value of a variable from val.

int mb_init_array(struct mb_interpreter_t* s,

void** l,

mb_data_e t,

int* d,

int c,

void** a);

This function initializes an array which can be used in BASIC. The

parameter mb_data_e t stands for the type of elements in the array,

can be either MB_DT_REAL or MB_DT_STRING; disable the

MB_SIMPLE_ARRAY macro to use a complex array with passing

MB_DT_NIL to it. The int* d and int c stand for ranks of dimensions

and dimension count. The function stores the created array to void**

a.

int mb_get_array_len(struct mb_interpreter_t* s,

void** l,

void* a,

int r,

int* i);

This function gets the length of an array. int r means which dimension

to get.

int mb_get_array_elem(struct mb_interpreter_t* s,

void** l,

void* a,

int* d,

int c,

mb_value_t* val);

This function gets the value of an element in an array.

int mb_set_array_elem(struct mb_interpreter_t* s,

void** l,

void* a,

int* d,

int c,

mb_value_t val);

This function sets the value of an element in an array.

int mb_init_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t* coll);

This function initializes a collection; pass a valid mb_value_t pointer

with a specific collection type you’d like to initialize.

int mb_get_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

mb_value_t idx,

mb_value_t* val);

This function gets an element in a collection. It accepts LIST index or

DICT key with mb_value_t idx.

int mb_set_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

mb_value_t idx,

mb_value_t val);

This function sets an element in a collection. It accepts LIST index or

DICT key with mb_value_t idx.

int mb_remove_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

mb_value_t idx);

This function removes an element from a collection. It accepts LIST

index or DICT key with mb_value_t idx.

int mb_count_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

int* c);

This function returns the count of elements in a collection.

int mb_keys_of_coll(struct mb_interpreter_t* s,

void** l,

mb_value_t coll,

mb_value_t* keys,

int c);

This function retrieves all keys of a collection. It gets indices of a LIST

or keys of a DICT; and stores them in mb_value_t* keys.

int mb_make_ref_value(struct mb_interpreter_t* s,

void* val,

mb_value_t* out,

mb_dtor_func_t un,

mb_clone_func_t cl,

mb_hash_func_t hs,

mb_cmp_func_t cp,

mb_fmt_func_t ft);

This function makes a referenced usertype mb_value_t object which

holds void* val as raw userdata. Note you need to provide some

functors to the core to manipulate it.

int mb_get_ref_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val,

void** out);

This function gets the raw userdata from a referenced usertype.

int mb_ref_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val);

This function increases the reference count of a referenced value.

int mb_unref_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val);

This function decreases the reference count of a referenced value.

int mb_set_alive_checker(struct mb_interpreter_t* s,

mb_alive_checker_t f);

This function sets an object aliveness checker globally.

int mb_set_alive_checker_of_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val,

mb_alive_value_checker_t f);

This function sets an object aliveness checker on a specific referenced

usertype value.

int mb_override_value(struct mb_interpreter_t* s,

void** l,

mb_value_t val,

mb_meta_func_e m,

void* f);

This function overrides a meta function of a specific referenced

usertype value.

int mb_dispose_value(struct mb_interpreter_t* s,

mb_value_t val);

This function disposes a value popped from an interpreter. Used for

strings only.

Invokable manipulation

int mb_get_routine(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_value_t* val);

This function gets a routine value by name in upper case.

int mb_set_routine(struct mb_interpreter_t* s,

void** l,

const char* n,

mb_routine_func_t f,

bool_t force);

This function sets a routine value with a specific name in upper case

using a native functor.

int mb_eval_routine(struct mb_interpreter_t* s,

void** l,

mb_value_t val,

mb_value_t* args,

unsigned argc,

mb_value_t* ret);

This function evaluates an invokable. mb_value_t* args is a pointer to

an array of arguments, unsigned argc is the count of it. The last

optional parameter mb_value_t* ret receives return value; pass NULL

to it if it’s not used.

int mb_get_routine_type(struct mb_interpreter_t* s,

mb_value_t val,

mb_routine_type_e* y);

This function gets the sub type of an invokable value. mb_value_t val

is a value of an invokable value, and the result will be assigned to

mb_routine_type_e* y.

Parsing and running

int mb_load_string(struct mb_interpreter_t* s,

const char* l

boo_t reset);

This function loads a string into an interpreter; then parses BASIC

source into executable structures and appends it to the AST.

int mb_load_file(struct mb_interpreter_t* s,

const char* f);

This function loads a file into an interpreter; then parses BASIC source

into executable structures and appends it to the AST.

int mb_run(struct mb_interpreter_t* s, bool_t clear_parser);

This function runs a parsed AST in an interpreter.

int mb_suspend(struct mb_interpreter_t* s,

void** l);

(Obsolete.) This function suspends and saves current execution point.

Call mb_run again to resume from a suspended point.

int mb_schedule_suspend(struct mb_interpreter_t* s,

int t);

(Obsolete.) This function schedules a suspend event, and it will

trigger the event after finishing active statements. It’s useful to do so

when you need to do something else during the whole execution.

A). mb_schedule_suspend(s, MB_FUNC_SUSPEND); It's re-enterable

which means next mb_run will resume execution from where you

suspended. B). mb_schedule_suspend(s, MB_FUNC_END); Terminate

an execution normally, no error message. C). mb_schedule_suspend(s,

MB_EXTENDED_ABORT); Or pass an argument greater than

MB_EXTENDED_ABORT to terminate an execution and trigger an

error message. You can call mb_schedule_suspend either in

_on_stepped or in a scripting interface function. The difference

between mb_schedule_suspend and mb_suspend is that mb_suspend

can be called in a scripting interface only, and it cannot trap type B)

and C) suspension.

Debugging

int mb_debug_get(struct mb_interpreter_t* s,

const char* n,

mb_value_t* val);

This function retrieves the value of a variable with a specific name in

upper case.

int mb_debug_set(struct mb_interpreter_t* s,

const char* n,

mb_value_t val);

This function sets the value of a variable with a specific name in

upper case.

int mb_debug_count_stack_frames(struct mb_interpreter_t* s);

This function gets and returns the stack frame count.

int mb_debug_get_stack_trace(struct mb_interpreter_t* s,

char** fs,

unsigned fc);

This function traces current call stack. It requires the

MB_ENABLE_STACK_TRACE macro enabled to use this function.

int mb_debug_set_stepped_handler(struct mb_interpreter_t* s,

mb_debug_stepped prev,

mb_debug_stepped post);

This function sets a pair of step handlers of an interpreter. The

functions to be set must be pointers of int (*

mb_debug_stepped_handler_t)(struct mb_interpreter_t*, void**,

const char*, int, unsigned short, unsigned short). These functions are

useful for step by step debugging, or handling extra stuff during

execution, the prev and post handlers are invoked before and after

execution of a statement respectively.

Type handling

const char* mb_get_type_string(mb_data_e t);

This function returns the string value of a specific type.

Error handling

int mb_raise_error(struct mb_interpreter_t* s,

void** l,

mb_error_e err,

int ret);

This function raises an error manually.

mb_error_e mb_get_last_error(struct mb_interpreter_t* s,

const char** file,

int* pos,

unsigned short* row,

unsigned short* col);

This function returns the latest error information in an interpreter

structure, and detail location. It also clears the latest error

information.

const char* mb_get_error_desc(mb_error_e err);

This function returns the string value of a specific error.

int mb_set_error_handler(struct mb_interpreter_t* s,

mb_error_handler_t h);

This function sets an error handler of an interpreter.

IO redirection

int mb_set_printer(struct mb_interpreter_t* s,

mb_print_func_t p);

This function sets a PRINT handler of an interpreter. Use this to

customize an output handler for the PRINT statement. The function

to be set must be a pointer of int (* mb_print_func_t)(struct

mb_interpreter_t*, const char*, …). Defaults to printf.

int mb_set_inputer(struct mb_interpreter_t* s,

mb_input_func_t p);

This function sets the INPUT handler of an interpreter. Use this to

customize an input handler for the INPUT statement. The function to

be set must be a pointer of int (* mb_input_func_t)(struct

mb_interpreter_t*, const char*, char*, int). Defaults to mb_gets. The

first parameter is an optional prompt text as INPUT “Some text”, A$.

Omit it if you don’t need.

Miscellaneous

int mb_set_import_handler(struct mb_interpreter_t* s,

mb_import_handler_t h);

This function sets a customized importing handler for BASIC code.

int mb_set_memory_manager(mb_memory_allocate_func_t a,

mb_memory_free_func_t f);

This function sets a memory allocator and a freer of MY-BASIC

globally.

bool_t mb_get_gc_enabled(struct mb_interpreter_t* s);

This function gets whether the garbage collecting is enabled.

int mb_set_gc_enabled(struct mb_interpreter_t* s,

bool_t gc);

This function sets whether the garbage collecting is enabled. Can be

used to pause and resume GC.

int mb_gc(struct mb_interpreter_t* s,

int_t* collected);

This function tries to trigger garbage collecting manually. And gets

how much memory has been collected.

int mb_get_userdata(struct mb_interpreter_t* s,

void** d);

This function gets the userdata of an interpreter instance.

int mb_set_userdata(struct mb_interpreter_t* s,

void* d);

This function sets the userdata of an interpreter instance.

int mb_gets(struct mb_interpreter_t* s,

const char* pmt,

char* buf,

int s);

A more safety evolvement of the standard C gets. Returns the length

of input text.

char* mb_memdup(const char* val,

unsigned size);

This function duplicates a block of memory of a MY-BASIC

manageable buffer; use this function before pushing a string

argument. Note this function only allocates and copies bytes with the

specific size, so you have to increase an extra byte to size for ending

“\0”. Eg.

mb_push_string(s, l, mb_memdup(str, (unsigned)(strlen(str) + 1));.

6. Scripting with MY-BASIC

The C programming language is outstanding at source code portability,

because C compilers are available on almost every platform.

MY-BASIC is written in standard C, so it can be compiled for different

platforms, with none or few modifications. It is also simple to embed

MY-BASIC into existing projects by just adding the core in dual files.

It should be realized which part in your project is sensitive to

execution speed, and which part is sensitive to flexibility and

configurability. Scripting is appropriate for the volatile part.

7. Customizing MY-BASIC

Redirecting PRINT and INPUT

Include a header file to use variadic:

Customize a print handler eg.

#include <stdarg.h>

Customize an input handler eg.

int my_print(const char* fmt, ...) {

 char buf[128];

 char* ptr = buf;

 size_t len = sizeof(buf);

 int result = 0;

 va_list argptr;

 va_start(argptr, fmt);

 result = vsnprintf(ptr, len, fmt, argptr);

 if(result < 0) {

 fprintf(stderr, "Encoding error.\n");

 } else if(result > (int)len) {

 len = result + 1;

 ptr = (char*)malloc(result + 1);

 result = vsnprintf(ptr, len, fmt, argptr);

 }

 va_end(argptr);

 if(result >= 0)

 printf(ptr); /* Change me */

 if(ptr != buf)

 free(ptr);

 return ret;

}

Register these handlers to an interpreter:

Now your customized printer and inputer will be invoked instead of

the standard ones. Use PRINT and INPUT in BASIC to access it.

Writing scripting API

It is also possible to introduce your own scripting interfaces.

First define the function in a native programming language (often C).

An invokable interface by BASIC is a pointer of int (*

mb_func_t)(struct mb_interpreter_t*, void**). An interpreter

mb_set_printer(bas, my_print);

mb_set_inputer(bas, my_input);

int my_input(const char* pmt, char* buf, int s) {

int result = 0;

if(fgets(buf, s, stdin) == 0) { /* Change me */

fprintf(stderr, "Error reading.\n");

exit(1);

}

result = (int)strlen(buf);

if(buf[result - 1] == '\n')

buf[result - 1] = '\0';

return result;

}

instance is used as the first argument of an extended function, the

function can pop variadic from the interpreter structure and push

none or one return value back into the structure. The int return value

indicates an execution status of an extended function, which should

always return MB_FUNC_OK for no error. Let’s make a maximum

function that returns the maximum value of two integers as a tutorial;

see the follow code:

The second step is to register this functions by mb_reg_fun(bas,

maximum); (assuming we already have struct mb_interpreter_t* bas

initialized).

After that you can use it as any other BASIC functions in MY-BASIC as:

int maximum(struct mb_interpreter_t* s, void** l) {

 int result = MB_FUNC_OK;

 int m = 0;

 int n = 0;

 int r = 0;

 mb_assert(s && l);

 mb_check(mb_attempt_open_bracket(s, l));

 mb_check(mb_pop_int(s, l, &m));

 mb_check(mb_pop_int(s, l, &n));

 mb_check(mb_attempt_close_bracket(s, l));

 r = m > n ? m : n;

 mb_check(mb_push_int(s, l, r));

 return result;

}

Just return an integer value greater than or equals to the macro

MB_EXTENDED_ABORT to indicate a user defined abort. It is

recommended to add an abort value like:

Then use return MB_ABORT_FOO; in your extended function when

some error occurred.

Using usertype values

Consider using usertypes, when built-in type doesn’t fit. It can accept

whatever data you give. MY-BASIC doesn’t care about what a

usertype really is; it just holds a usertype value, and communicates

with BASIC.

There are only two essential interfaces to get or set a usertype:

mb_pop_usertype and mb_push_usertype. You can push a void* to an

interpreter and pop a value as void*.

For more information about using referenced usertype, see the

interfaces above, or check the website.

typedef enum mb_user_abort_e {

 MB_ABORT_FOO = MB_EXTENDED_ABORT + 1,

 /* More abort enums… */

};

i = maximum(1, 2)

print i;

Macros

Some features of MY-BASIC could be configured by macros.

MB_SIMPLE_ARRAY

Enabled by default. An entire array uses a unified type mark, which

means there are only two kinds of array, string and real_t.

Disable this macro if you would like to store generic type values in an

array including int_t, real_t, usertype, etc. Besides, array of string is

still another type. Note non simple array requires extra memory to

store type mark of each element.

MB_ENABLE_ARRAY_REF

Enabled by default. Compiles with referenced array if this macro is

defined, otherwise compiles as value type array.

MB_MAX_DIMENSION_COUNT

4 by default. Change this to support more array dimensions. Note it

cannot be greater than the maximum number which an unsigned

char can hold.

MB_ENABLE_COLLECTION_LIB

Enabled by default. Compiles with LIST and DICT libraries if this macro

is defined.

MB_ENABLE_USERTYPE_REF

Enabled by default. Compiles with referenced usertype support if this

macro is defined.

MB_ENABLE_ALIVE_CHECKING_ON_USERTYPE_REF

Enabled by default. Compiles with object aliveness checking on

referenced usertype if this macro is defined.

MB_ENABLE_CLASS

Enabled by default. Compiles with class (prototype) support if this

macro is defined.

MB_ENABLE_LAMBDA

Enabled by default. Compiles with lambda (anonymous function)

support if this macro is defined.

MB_ENABLE_MODULE

Enabled by default. Compiles with module (namespace) support if

this macro is defined. Use IMPORT “@xxx” to import a module, and

all symbols in that module could be used without the module prefix.

MB_ENABLE_UNICODE

Enabled by default. Compiles with UTF8 manipulation ability if this

macro is defined, to handle UTF8 string properly with functions such

as LEN, LEFT, RIGHT, MID, etc.

MB_ENABLE_UNICODE_ID

Enabled by default. Compiles with UTF8 token support if this macro is

defined, this feature requires MB_ENABLE_UNICODE enabled.

MB_ENABLE_FORK

Enabled by default. Compiles with fork support if this macro is

defined.

MB_GC_GARBAGE_THRESHOLD

16 by default. It will trigger a sweep-collect GC cycle when this

number of deallocation occurred.

MB_ENABLE_ALLOC_STAT

Enabled by default. Use MEM to tell how much memory in bytes has

been allocated by MY-BASIC. Note statistics of each allocation takes

sizeof(intptr_t) more bytes.

MB_ENABLE_SOURCE_TRACE

Enabled by default. To trace where an error occurs.

Disable this to reduce some memory occupation. Only do this on

memory sensitive platforms.

MB_ENABLE_STACK_TRACE

Enabled by default. MY-BASIC will record stack frames including sub

routines and native functions if this macro is defined.

MB_ENABLE_FULL_ERROR

Enabled by default. Prompts detailed error message. Otherwise all

error types will prompts an “Error occurred” message. However, it’s

always possible to get specific error type by checking error code in

the callback.

MB_CONVERT_TO_INT_LEVEL

Describes how to handle real numbers after an expression is

evaluated. Just leave it a s real when it’s defined as

MB_CONVERT_TO_INT_LEVEL_NONE; otherwise try to convert it to

an integer if it doesn’t contains decimal part when it’s defined as

MB_CONVERT_TO_INT_LEVEL_ALL. Also you could use the

mb_convert_to_int_if_posible macro to deal with an mb_value_t in

your own scripting interface functions.

MB_PRINT_INPUT_PROMPT

Enabled by default. Prefers to output the specified input prompt to

the interpreter’s output function.

MB_PRINT_INPUT_CONTENT

Disabled by default. Prefers to output the inputted content to the

interpreter’s output function.

MB_PREFER_SPEED

Enabled by default. Prefers running speed over space occupation as

much as possible. Disable this to reduce memory footprint.

MB_COMPACT_MODE

Enabled by default. C struct may use a compact layout.

This might cause some strange pointer accessing bugs with some

compilers (for instance, some embedded systems). Try to disable this

if you met any strange bugs.

_WARNING_AS_ERROR

0 by default.

Define this macro as 1 in my_basic.c to treat warnings as error, or

they will be ignored silently.

Something like divide by zero, wrong typed arguments passed will

trigger warnings.

_HT_ARRAY_SIZE_DEFAULT

193 by default. Change this in my_basic.c to resize the hash tables.

Smaller value will reduce some memory occupation, size of hash

table will influence tokenization and parsing time during loading,

won’t influence running performance most of the time (except for

cross scope identifier lookup).

_SINGLE_SYMBOL_MAX_LENGTH

128 by default. Max length of a lexical symbol.

8. Memory Occupation

Memory footprint is often a sensitive bottleneck under some

memory constrained platforms. MY-BASIC provides a method to

count how much memory an interpreter has allocated. Write script as

follow to tell it in bytes:

Note that it will take sizeof(intptr_t) bytes more of each allocation if

this statistics is enabled, the extra bytes don’t count.

Remove the MB_ENABLE_SOURCE_TRACE macro in my_basic.h to

disable source trace to reduce some memory occupation, it still

prompts errors.

Redefine the _HT_ARRAY_SIZE_DEFAULT macro with a smaller value

minimum to 1 in my_basic.c to reduce memory occupied by hash

tables in MY-BASIC. Value 1 means a linear lookup, mostly for parsing

mechanisms and dynamic lookup with complex identifiers.

The memory is limited in embedded systems which can run for years

and cause a severe waste of memory due to fragmentation. Besides,

it's efficient for MY-BASIC to customizing a memory allocator, even on

systems with a plenty of memory.

An allocator is in form of:

typedef char* (* mb_memory_allocate_func_t)(unsigned s);

print mem;

And a freer is in form of:

typedef void (* mb_memory_free_func_t)(char* p);

Then you can indicate MY-BASIC to use them globally instead of

standard malloc and free by:

MBAPI int mb_set_memory_manager(mb_memory_allocate_func_t a,

mb_memory_free_func_t f);

Note these functors only affect things going inside my_basic.c, but

main.c still uses the standard C library.

There is already a simple memory pool implementation in main.c. You

need to make sure the _USE_MEM_POOL macro is defined as 1 to

enable it.

There are four functions in this implementation as tutorial:

_open_mem_pool opens the pool when setting up an interpreter;

_close_mem_pool closes the pool when terminating; a pair of

_pop_mem and _push_mem are registered to MY-BASIC. Note that

_pop_mem calls the standard malloc if an expected size is not a

common size in the pool; and it will take sizeof(union _pool_tag_t)

extra bytes to store meta data with each allocation. A typical

workflow looks as follow:

Strictly speaking, the pool doesn't guarantee to allocate memory at

continuous spaces, it is an object pool other than a memory pool,

which pops a free chunk of memory with an expected size to user,

and pushes it to the stack back when user frees it instead of freeing it

to system. Replace it with other efficient algorithms to get good

performance and balance between space and speed.

9. Using MY-BASIC as a Standalone Interpreter

Execute the binary directly without any argument to launch in the

interactive mode. Commands for this mode as follow:

Command Summary Usage

HELP View the help

_open_mem_pool(); // Open it

mb_set_memory_manager(_pop_mem, _push_mem); // Register

them

{

mb_init();

mb_open(&bas);

// Other deals with MY-BASIC

mb_close(&bas);

mb_dispose();

}

_close_mem_pool(); // Finish

information

CLS Clear the screen

NEW Clear the current

program

RUN Run the current program

BYE Quit the interpreter

LIST List the current program LIST [l [n]], l is start line

number, n is line count

EDIT Edit

(modify/insert/remove)

a line in current program

EDIT n, n is line number;

EDIT -i n, insert a line

before a specific line, n is

line number;

EDIT -r n, remove a line, n

is line number

LOAD Load a file to the current

program

LOAD *.*

SAVE Save the current

program to a file

SAVE *.*

KILL Delete a file KILL *.*

DIR List all files in a directory DIR p, p is a directory path

Type a command (maybe with several necessary arguments) then

hint enter to execute it. Commands are only operations of the

interpreter other than keyword.

Pass a file path to the binary to load and run that BASIC file instantly.

Pass an option –e and an expression to evaluate and print it instantly,

eg. –e “22 / 7”, note the double quotation marks are required when

an expression contains spacing characters.

Pass an option –p and a number to set the threshold size of the

memory pool, eg. –p 33554432 to set the threshold to 32MB.

MY-BASIC will tidy the memory pool when the free list reached this

size.

